
LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Creating Interactive Webmaps in R (Choropleths)

The use of interactive Webmaps provides LPRO with powerful visual representations that
can easily be distributed to members. Webmapping provides an interactive means of representing
data overlaid with spatial dimensions that allows exploration of data in ways often not immediately
accessible. Examples can be seen here. This piece will provide a template for the creation of
interactive maps for the exploration of quantitative data with regions (polygons).

WORKING WITH R
 Using R can be intimidating at first. R is used by typing precise commands into the IDE,
which will respond to exactly what is typed. R also can install new libraries (packages of
commands) on the fly, allowing maximum flexibility once comfort with the system has been
achieved. Here we can see what R looks like when we first open it:
There are four boxes available to us here. The top left box, known as the Integrated Development

Environment (IDE), is the area we will be inserting commands. The top right box, known as the
Global Environment, shows us everything that has been loaded into R. Right now, we see it is
empty. The bottom left box, the console, gives us information about what R is currently working
on or error messages. Finally, the bottom right box is the help/viewer box which provides technical
support or displays some types of output. This can be displayed here:

Figure 1: Opening R

https://pragmaticmax.github.io/LPRO-Blog/Grad_Rates.html

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 2: R Components

From this basic understanding, we can start to create some maps.

STARTING TO MAP
 The first step to creating Webmaps with R is to load the required libraries. These libraries
provide R with the necessary commands to produce Webmaps. Three libraries are important for
this task: Rgdal, leaflet, and magrittr. Rgdal is an extension for R that allows it to read GIS data,
leaflet provides the Webmaps, and magrittr gives some shortcuts for the code we will write.
 The first time we use these libraries, we will have to install them into R. This can be done
in the Help and Viewer box. Select the “Packages” and click “Install” which can be seen here1:

1 Shorthand: Packages>Install

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 3: Installing Packages 1

After clicking “Install,” a dialogue box will appear. Begin typing the name of the required libraries
in the text box (rgdal, leaflet, and magrittr) and the box will provide a dropdown list of the
libraries. Select the libraries and click “Install” in the dialogue box.

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 4: Installing Packages 2

SETTING DIRECTORIES AND LOADING LIBRARIES AND DATA
 Now we are ready to start. First, we have to tell R where it can save all generated files and
where to look for files. This is known as setting the directory. To set the directory, in the top
ribbon click “Session,” highlight “Set Working Directory,” and select “Choose Directory.”

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 5: Setting the Directory

A dialogue box will then ask you where you want your directory. This will be a folder that you
want to save everything in, and may also contain the data you want to use2.

Loading Libraries
Now that the directory is set, we load the libraries with the command: library(). In the

parentheses, insert the names of the libraries you would like to load. In this case rgdal, magrittr,
and leaflet. That would look like this:

2 If this folder does not contain all the data, you will have to select it through its long address.

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Highlight those lines, then click “Run:”
Figure 6: library() command

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 7: Run Button

From here on, I will use the term “run those lines” or “run that code,” which refers to highlighting
the indicated text, and clicking the “Run” button. Once the libraries are loaded, we can load our
data.

Loading Data
 To load data from excel, I suggest formatting the excel data down to the simplest form you
need for what you are creating. For example, I will be working with school graduation data. I have
a very large data set that includes multiple categories. For this piece I only want my school names,
cohort sizes, and graduation rates. As such, my excel file should only have those three variables.
Additionally, when making the data simple, save it in the simplest format. For spreadsheets, this
would be CSV files. Be sure to save your data as a CSV in excel before proceeding.

To load my CSV, I have inserted a short command that is actually full of simplifications.
That command looks like this:

GR.df <-read.csv(“Grad Rates.csv”)

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 8: Loading Data- Simple Command

Here I have some built in shortcuts. First GR.df is what I am naming the data while it is in
R. GR indicates Graduation Rates, while .df indicates that this is a dataframe3. The <- works as a
command to shove everything into the GR.df. The command “read.csv()” tells R to look for csv
data, while “Grad Rates.csv” is the data file. Here I can use just “Grad Rates.csv” to grab my data
file because it is in the folder we set as the directory earlier. Now that we know what this line is
doing, run that line. If the data you want is not in the directory, you must tell R exactly where it is.

3 Special terminology for spreadsheets in certain contexts

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 9: Items in the Global Environment

Now we have something in our global environment. It is the dataframe we created from
the CSV file. If you click on it, you will see the data loaded in a spreadsheet:

Figure 10: Loaded data as a Spreadsheet

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Loading GIS data
 To load the GIS data, we will use the readOGR command provided by Rgdal. In my
project, I used this command:
SD.mp <-readOGR(dsn = “C:/Users/filimos/Documents/Maps/School Districts/OR_SD_Com",

layer = "OR_SD_Com")

Let’s break this down. Here, “SD.mp” indicates School District map. I use the dots to indicate
what type of data each object is. If you recall, the “<-“ shoves everything after into what precedes.
The “readOGR()” command lets us read GIS data. Inside of the parentheses, I indicate the data
source (dsn = “C:/Users/filimos/Documents/Maps/School Districts/OR_SD_Com") then the name
of the GIS file (layer = “OR_SD_Com”). Be sure to put the comma between the data source and
the name of the GIS file. Now let’s run this line of code:

Figure 11: Loading GIS data

Now we have data and a map loaded. Next we have to join the data and map together.

COMBINING DATA
 To combined the data, we need something that identifies the data in both the dataframe
and the map. Luckily, we have unique names on each of these. On the dataframe, this is the
“Name” variable, while in the GIS data this is the “NAME” variable. R sees capital letters and
lower case letters as different, so these are not the same. If I try to merge the data as it is, I will get

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

an error message. So I will rename the “Name” variable in the dataframe to “NAME”. This is
done with this line of code:

colnames(GR.df)[1]<- “NAME”

This line of code tells R to find the column names of my GR.df column 1, and renames it to
“NAME.” Now I can combine the data.

To combine GIS data, I must make sure that the map data is first when I insert my merge
command. This can be achieved with this command:

SD.dm<- merge(SD.mp, GR.df, by = "NAME")

Here, I have named this SD.dm to indicate it is the School District data map. Once SD.dm is
loaded into my global environment, I can start putting together my final piece.

LABELS AND COLORING
 Now that the data is merged, we can start making the Webmap. The Webmap will be a
choropleth, which is the technical term for a map that shows different colored regions based on
some value. To create the choropleth, we will need to define colors and labels for the regions first.
Then we will generate the choropleth. Finally, we will make stylistic changes to the overall look
and feel.

Defining Colors
 To define colors, first I must define the breakpoints in the data between different values.
To do this, I will create some bins with the following command:

cbin <- c(0, 10, 20, 30, 40, 50, 60, 70, 75, 80, 85, 90, 95, 100)

Let’s break this down. I have named this object “cbin” to remind me that this is the color bins. On
the left side, the c(0, 10, 20, 30, 40, 50, 60, 70, 75, 80, 85, 90, 95, 100) combines all of the values
to determine the cutoffs between each bin. If there are values outside of the range defined here,
they will be treated as missing data.
 With these defined bins, now I must assign colors to the values. To do this, I use this
command:

pal <- colorBin("RdYlGn", domain = SD.dm$Grad_Rate, bins = cbin)

Here I named the object “pal” to remind me that this is the palette I will be working with. I then
use the colorBin() command to define the colors for the bins. ‘"RdYlGn"’indicates a pre-
generated color palette that is based on a graduated scale of the colors Red, Yellow, and Green.
Please note the quotation marks indicate that we are using something defined somewhere else.
The “domain = SD.dm$Grad_Rate” indicates that we will be creating the domain of our values
based on the domain of Grad_Rate variable within our datamap SD.dm. the “$” indicates to R
that we are looking inside of the SD.dm. Finally, the bins = cbin tells R that the bins we are using
is the cbin variable we defined. Let’s run the code so far:

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 12: Now with bins and a color palette

Notice now in the Global Environment we have cbin and pal defined. Next we will create the
labels.

Creating the Labels
 To create the labels we will define labels. To do this, we will use the command:
labels <- sprintf(

"%s
%g percent Graduated in 2015 -2016",

SD.dm$NAME, SD.dm$Grad_Rate) %>%

lapply(htmltools::HTML)

This command looks a bit more intimidating than the others, but understanding the parts
will show you what is going on. First, we are using the sprintf command to create an object that is
a combination of numbers and text. Inside the "%s
%g percent

Graduated in 2015 -2016", SD.dm$NAME, SD.dm$Grad_Rate) we have some html language
that tells R how to format the labels. The bit of text “percent Graduated in 2015 -2016” can be
any text that does not include special character, and will be inserted into our labels. Feel free to
customize this section. The second line “SD.dm$NAME, SD.dm$Grad_Rate” tells R to create
the labels based on the NAME and Grad_Rate variables. The “%>%” is a special command
loaded from magrittr that simplifies holding pieces together. The last line
“lapply(htmltools::HTML)” allows us to use the html formatting mentioned in the second line
of this code. After running this bit of code, our R environment should look like this:

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Figure 13: Finished labels

MAP MAKING
 This last section of code is the most intensive, but by looking at each individual line we can
understand what is happening. Moreover, once we understand what is happening, we can start
changing everything to work for how we want everything to look in the final product. First, I will
scare you with the full code. Then we will break it down. The full code looks like this:
SR.lf<- leaflet(SD.dm, options = leafletOptions(minZoom = 5)) %>%

 setView(lng = -123.0317114, lat = 44.9384532, zoom = 7) %>%

 addProviderTiles(providers$Esri.NatGeoWorldMap) %>%

 addPolygons(

 fillColor= ~pal(Grad_Rate),

 weight = 1,

 opacity = 1,

 color = 'white',

 dashArray = "3",

 fillOpacity = 0.7,

 highlight = highlightOptions(

 weight = 5,

 color = "#666",

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

 dashArray = "",

 fillOpacity = 0.7,

 bringToFront = FALSE),

 label = labels,

 labelOptions = labelOptions(

 style = list("font-weight" = "normal", padding = "3px 8px"),

 textsize = "15px",

 direction = "auto")) %>%

 addLegend(pal = pal, values =~ Grad_Rate, opacity = 0.7,

 title = "Graduation Rates in the 2015-16 School Year",

 na.label = "No Data",

 position = "bottomright")

SR.lf

A bit scary, but there are piece in here you might recognize already. Let’s contrast this with the
final product:

Figure 14: Final product. We are almost there!

 To begin, we will break down the first line of the map making code:
SR.lf<- leaflet(SD.dm, options = leafletOptions(minZoom = 5)) %>%

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

Here we have the command “leaflet” that tells R to create a leaflet object. Leaflet is the piece that
is directly responsible for the Webmaps. We are creating the leaflet out of our School Districts
data map defined earlier and setting some options. Here, I have set a minimum zoom to keep the
end user from being distracted by parts of the globe that don’t have any data. Next I set where the
map opens to and what the basemap is with these two lines of code:

 setView(lng = -123.0317114, lat = 44.9384532, zoom = 7) %>%

addProviderTiles(providers$Esri.NatGeoWorldMap) %>%
Now I add the shapes of the school districts with the command “addPolygons.” Within this
command, we have definitions of how the polygons must behave. Here we have:
 addPolygons(

 fillColor= ~pal(Grad_Rate),

 weight = 1,

 opacity = 1,

 color = 'white',

 dashArray = "3",

 fillOpacity = 0.7,

 highlight = highlightOptions(

 weight = 5,

 color = "#666",

 dashArray = "",

 fillOpacity = 0.7,

 bringToFront = FALSE),

First we fill the polygons based on the color palette we defined earlier based on the “Grad_Rate”
variable. Next we set the weight, opacity, and color of the lines separating the polygons. I elected to
create dashed lines, evident in the “dashArray” command. The opacity of the polygons is set in
the “fillOpacity” command. Finally, I set the highlight and highlight options for when the mouse
is over a particular area4.
 Finally, we can apply the labels and the legend. The labels
command simply equates labels with those that we created earlier:
 label = labels,

 labelOptions = labelOptions(

 style = list("font-weight" = "normal", padding = "3px 8px"),

 textsize = "15px",

 direction = "auto")) %>%

The legend is defined by our palette, variable values, and its opacity is set. We add a title, define
how to handle missing values, and set where the legend will be on the final piece. That code looks
like this:
 addLegend(pal = pal, values =~ Grad_Rate, opacity = 0.7,

 title = "Graduation Rates in the 2015-16 School Year",

 na.label = "No Data",

4 Important to not here, on the highlight options, the “bringToFront” must be set to “FALSE.” If it is not, the
webmap will interact unfavorably if it is opened in Internet Explorer.

LEGISLATIVE POLICY AND RESEARCH OFFICE
Technical Brief

Sione Filimoehala

 position = "bottomright")

Finally, we look at the leaflet created simply by calling its name:

SR.lf

Here is the complete piece in R:

